Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding
نویسندگان
چکیده
Regulation of symmetrical cell growth in the culm is important for proper culm development. So far, the involvement of gibberellin (GA) in this process has not yet been demonstrated in sorghum. Here, we show that GA deficiency resulting from any loss-of-function mutation in four genes (SbCPS1, SbKS1, SbKO1, SbKAO1) involved in the early steps of GA biosynthesis, not only results in severe dwarfism but also in abnormal culm bending. Histological analysis of the bent culm revealed that the intrinsic bending was due to an uneven cell proliferation between the lower and upper sides of culm internodes. GA treatment alleviated the bending and dwarfism in mutants, whereas the GA biosynthesis inhibitor, uniconazole, induced such phenotypes in wild-type plants--both in a concentration-dependent manner, indicating an important role of GA in controlling erectness of the sorghum culm. Finally, we propose that because of the tight relationship between GA deficiency-induced dwarfism and culm bending in sorghum, GA-related mutations have unlikely been selected in the history of sorghum breeding, as could be inferred from previous QTL and association studies on sorghum plant height that did not pinpoint GA-related genes.
منابع مشابه
Mutations in the gene of the Gα subunit of the heterotrimeric G protein are the cause for the brachytic1 semi-dwarf phenotype in barley and applicable for practical breeding
BACKGROUND Short-culm mutants have been widely used in breeding programs to increase lodging resistance. In barley (Hordeum vulgare L.), several hundreds of short-culm mutants have been isolated over the years. The objective of the present study was to identify the Brachytic1 (Brh1) semi-dwarfing gene and to test its effect on yield and malting quality. RESULTS Double-haploid lines generated ...
متن کاملEngineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands
Traditional breeding for high-yielding rice has been dependent on the widespread cultivation of gibberellin (GA)-deficient semi-dwarf varieties. Dwarfism lowers the "center of gravity" of the plant body, which increases resistance against lodging and enables plants to support high grain yield. Although this approach was successful in latter half of the 20th century in rice and wheat breeding, t...
متن کاملHigh-throughput discovery of mutations in tef semi-dwarfing genes by next-generation sequencing analysis.
Tef (Eragrostis tef) is a major cereal crop in Ethiopia. Lodging is the primary constraint to increasing productivity in this allotetraploid species, accounting for losses of ∼15-45% in yield each year. As a first step toward identifying semi-dwarf varieties that might have improved lodging resistance, an ∼6× fosmid library was constructed and used to identify both homeologues of the dw3 semi-d...
متن کاملNew Approach to Increasing Rice Lodging Resistance and Biomass Yield Through the Use of High Gibberellin Producing Varieties
Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA)-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing...
متن کاملUtilization of Stiff Culm Trait of Rice smos1 Mutant for Increased Lodging Resistance
Although the introduction of semi-dwarf trait into rice has led to improved lodging resistance making it capable of supporting high grain yield, lodging still remains a concern when attempting to further increase the grain yield of rice. However, improving the lodging resistance in rice by depending on the semi-dwarf trait alone is possible only up to a certain limit, beyond which other traits ...
متن کامل